Кировское областное государственное общеобразовательное бюджетное учреждение «Средняя школа с углубленным изучением отдельных предметов пгт Богородское»

Приложение к ООП ООО Приказ № 93 от 30.08.2023 «О внесении изменений в ООП ООО, ООП СОО на 2023- 2024 учебный год»

Рабочая программа по предмету «Химия» 8 - 9 классы на 2023-2025 учебный год

Программу подготовила Небогатикова И.Г. учитель химии

Богородское 2023

Пояснительная записка.

Рабочая программа разработана в соответствии с ФГОС ООО (приказ Минобрнауки РФ от 17.12.2010 г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования" (с изменениями и дополнениями)»; с требованиями к результатам освоения основной образовательной программы основного общего образования, представленных Федеральном В государственном образовательном стандарте, общего образования второго поколения; примерной программы основного общего образования по химии как инвариантной учебного (обязательной) части программы формирования курса; развития И универсальных учебных действий.

Рабочая программа разработана на основе основной образовательной программы основного общего образования с учетом Рабочей программы по химии Габриелян О.С. Программа курса химии для 8-11 классов общеобразовательных учреждений 2010 г.

Рабочая программа ориентирована на учебники:

- Химия. 8 класс: учебник/ О.С.Габриелян. 8-е изд. перераб. М.: Дрофа, 2019.-287 с.:ил.
- Химия 9 класс: учеб. для общеобразоват. организаций/ О.С. Габриелян, И.Г. Остроумов, С.А. Сладков. М.: Просвещение, 2019.-223 с.; ил.

Химия, как одна из основополагающих областей естествознания, является неотъемлемой частью образования школьников. Каждый человек живет в мире веществ, поэтому он должен иметь основы фундаментальных знаний по химии (химическая символика, химические понятия, факты, основные законы и теории), позволяющие выработать представления о составе веществ, их строении, превращениях, практическом использовании, а также об опасности, которую они могут представлять. Изучая химию, учащиеся узнают о материальном единстве всех веществ окружающего мира, обусловленности свойств веществ их составом и строением, познаваемости и предсказуемости химических явлений. Изучение свойств веществ и их превращений способствует развитию логического мышления, а практическая работа с веществами (лабораторные опыты) — трудолюбию, аккуратности и собранности. На примере химии учащиеся получают представления о методах познания, характерных для естественных наук (экспериментальном и теоретическом). Такое положение химии обеспечивает формирование у учащихся:

- -целостного представления о мире, основанного на приобретенных знаниях, умениях и способах деятельности;
 - -приобретение опыта разнообразной деятельности, познании и самопознания;
- -подготовке к осуществлению осознанного выбора индивидуальной образовательной или профессиональной траектории.
- -развитие личности обучающихся, их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целостного поведения в быту и трудовой деятельности;
 - -выработку понимания общественной потребности в развитии химии, а также
- -формирование умений безопасного обращения с веществами, используемыми в повседневной жизни.

Особенности содержания обучения химии в основной школе обусловлены спецификой химии как науки. Основными проблемами химии являются изучение состава и строения веществ, зависимости их свойств от строения, получение веществ с заданными свойствами, исследование закономерностей химических реакций и путей управления ими в целях получения веществ, материалов, энергии.

Основные идеи курса «Химия»:

загрязнения;

- материальное единство веществ естественного мира, их генетическая связь; между строением, свойствами, получением и применением веществ;
- познаваемость веществ и закономерностей протекания химических реакций;
- объясняющая и прогнозирующая роль теоретических знаний для фактологического материала химии элементов;
- конкретное химическое соединение как звено в непрерывной цепи превращений веществ, участвующее в круговороте химических элементов и химической эволюции;
- объективность и познаваемость законов природы; знание законов химии позволяет управлять химическими превращениями веществ, находить экологически безопасные способы производства и охраны окружающей среды от
- взаимосвязанность науки и практики; требования практики движущая сила развития науки, успехи практики обусловлены достижениями науки;
- -развитие химической науки и химизация народного хозяйства служат интересам человека и общества в целом, имеют гуманистический характер и призваны способствовать решению глобальных проблем современности.

Эти идеи реализуются путем достижения следующих целей:

- формирование у учащихся химической картины мира как органической части его целостной естественнонаучной картины;
- развитие познавательных интересов, интеллектуальных и творческих способностей учащихся в процессе изучения ими химической науки и ее вклада в современный научно технический прогресс;
- формирование важнейших логических операций мышления (анализ, синтез, обобщение, конкретизация, сравнение и др.)
- в процессе познания системы важнейших понятий, законов и теорий о составе, строении и свойствах химических веществ;
- воспитание убежденности в том, что применение полученных знаний и умений по химии является объективной необходимостью для безопасной работы с веществами и материалами в быту и на производстве;
- проектирование и реализация выпускниками основной школы личной образовательной траектории: выбор профиля обучения в старшей школе или профессионального образовательного учреждения;
- овладение ключевыми компетенциями (учебно познавательными, информационными, ценностно смысловыми, коммуникативными), химическому эксперименту. Он позволяет сформировать у учащихся специальные предметные умения работать с химическими веществами, выполнять простые химические опыты, научить их безопасному и экологически грамотному обращению с веществами в быту и на производстве.

Задачами изучения учебного предмета «Химия» являются:

учебные: формирование системы химических знаний как компонента естественнонаучной картины мира;

развивающие: развитие личности обучающихся, их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и в трудовой деятельности;

воспитательные: формирование умений, безопасного обращения с веществами, используемыми в повседневной жизни; выработка понимания общественной потребности в развитии химии, а также формирование отношения к химии, как к возможной области будущей практической деятельности.

Общая характеристика содержания курса.

Курс химии 8 класса изучается в два этапа.

Первый этап — химия в статике, на котором рассматриваются состав и строение атома и вещества. Его основу составляют сведения о химическом элементе и формах его существования — атомах, изотопах, ионах, простых веществах и их важнейших соединениях (оксидах и других бинарных соединениях, кислотах, основаниях и солях), строении вещества (типологии химических связей и видах кристаллических решеток).

Второй этап — химия в динамике, на котором учащиеся знакомятся с химическими реакциями как функцией состава и строения участвующих в химических превращениях веществ и их классификации. Свойства кислот, оснований и солей сразу рассматриваются в свете теории электролитической диссоциации.

Кроме этого, свойства кислот и солей, щелочей характеризуются также в свете окислительно - восстановительных процессов.

В курсе 9 класса вначале обобщаются знания учащихся по курсу 8 класса, апофеозом которого является Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Кроме того, обобщаются сведения о химических реакциях и их классификации — знания об условиях, в которых проявляются химические свойства веществ, и способах управлениях химическими процессами. Затем рассматриваются общие свойства металлов и неметаллов. Приводятся свойства щелочных и щелочноземельных металлов и галогенов (простых веществ и соединений галогенов), как наиболее ярких представителей этих классов элементов, и их сравнительная характеристика. В курсе подробно рассматриваются состав, строение, свойства, получение и применение отдельных, важных в хозяйственном отношении веществ, образованных элементами 2—7 го периодов.

Предлагаемая программа по химии раскрывает вклад учебного предмета в достижение целей основного общего образования и определяет важнейшие содержательные линии предмета:

- «вещество» знание о составе и строении веществ, их свойствах и биологическом значении;
- «Химическая реакция» знание о превращении одних веществ в другие, условиях протекания таких превращений и способах управления реакциями;
- «применение веществ» знание и опыт безопасного обращения с веществами, материалами и процессами, необходимыми в быту и на производстве;
- «язык химии» оперирование системой важнейших химический понятий, знание химической номенклатуры, а также владение химической символикой (химическими формулами и уравнениями).

Поскольку основные содержательные линии школьного курса химии тесно переплетены, в примерной программе содержания представлено не по линиям, а по разделам: «Основные понятия химии (уровень атомно-молекулярных представлений)», «Периодический закон и периодическая система химических элементов Д.И. Менделеева. Строение вещества», «Многообразие химических решений», «Многообразие веществ».

Ценностные ориентиры содержания учебного предмета.

Ценностные ориентиры содержания курса химии в основной школе определяются спецификой химии как науки. Понятие «ценности» включает единство объективного (сам объект) и субъективного (отношение субъекта к объекту), поэтому в качестве ценностных ориентиров химического образования выступают объекты, изучаемые в курсе химии, к которым у обучающихся формируется ценностное отношение. Основу познавательных ценностей составляют научные знания, научные методы познания, а ценностные ориентации, формируемые у обучающихся в процессе изучения химии, проявляются:

- -в признание ценности научного знания, его практической значимости, достоверности;
 - в ценности химических методов исследования живой и неживой природы;
- в понимании сложности и противоречивости самого процесса познания как известного стремления к истине;

В качестве объектов ценностей труда и быта выступают творческая созидательная деятельность, ЗОЖ, а ценностные ориентации содержания курса химии могут рассматриваться как формирование:

- понимание необходимости ЗОЖ
- потребность в безусловном выполнении правил безопасности использования веществ в повседневной жизни
 - -сознательный выбор будущей профессиональной деятельности.

Курс химии обладает возможностями для формирования коммуникативных ценностей, основу которых составляют процесс общения, грамотная речь, а ценностные ориентации направлены на воспитание учащихся:

- правильного использования химической терминологии в символике
- потребности вести диалог, выслушивать мнение оппонента
- -способности открыто выражать и аргументированно отстаивать свою точку зрения.

Место учебного предмета в учебном плане.

Особенности содержания курса «Химия» являются главной причиной того, что в базисном учебном (образовательном) плане этот предмет появляется последним в ряду естественно - научных дисциплин, поскольку для его освоения школьники должны обладать не только определённым запасом предварительных естественно- научных знаний, но и достаточно хорошо развитым абстрактным мышлением.

Химия в основной школе изучается в 8-9 классах. Общее число учебных часов за два года обучения - 138, из них в 8-х классах 70 часов (2 часа в неделю), в 9-х классах 68 часов (2 часа в неделю), в том числе на практическую часть в 8 классе - 5 часов, контрольных и зачетных работ - 5 часов, в 9 классе практических работ - 4 часа, контрольные и зачетные уроки -5 часов.

В процессе освоения программы курса химии для основной школы учащиеся овладевают умениями ставить вопросы, наблюдать, объяснять, классифицировать, сравнивать, проводить эксперимент, определять источники химической информации, получать и анализировать её, а также готовить на этой основе собственный информационный продукт, презентовать его и вести дискуссию. Программа позволяет учащимся определиться с выбором профиля обучения в старшей школе.

Рабочая программа построена на основе концентрического подхода. Это достигается путем вычленения дидактической единицы — химического элемента и дальнейшем, усложнении и расширении ее: здесь таковыми выступают формы существования (свободные атомы, простые и сложные вещества). В программе учитывается реализация межпредметных связей с курсом физики (7 класс) и биологии (6-7 классы), где дается знакомство со строением атома, химической организацией клетки и процессами обмена веществ.

Основной формой организации учебного процесса является классно-урочная система. В качестве дополнительных форм организации образовательного процесса используется система консультационной поддержки, индивидуальных занятий, самостоятельная работа учащихся с использованием современных информационных технологий.

Преобладающей формой контроля выступают: письменный (самостоятельные и контрольные работы) и устный опрос (собеседование), тестирование).

Формы, методы и средства обучения, технологии

В данном курсе ведущими методами обучения предмету являются: объяснительно - иллюстративный и репродуктивный, хотя используется и частично-поисковый. На уроках используются элементы следующих технологий: личностно - ориентированное обучение, обучение с применением опорных схем, ИКТ, проектная деятельность, здоровье сберегающие технологии, игровые методы обучения.

Используются следующие формы обучения: учебные занятия, экскурсии, наблюдения, опыты, эксперименты, работа с учебной и дополнительной литературой, анализ, мониторинг, исследовательская работа, презентация. Определенное место в овладении данным курсом отводится самостоятельной работе: подготовка творческих работ, презентаций, сообщений, рефератов.

Формы промежуточной и итоговой аттестации

Промежуточная аттестация проводится в форме:

- тестов;
- -контрольных;
- самостоятельных работ;
- практических;
- творческих работ.

Учащиеся 9-го проходят итоговую аттестацию – в виде ГИА по выбору.

Результаты освоения курса химии (личностные, метапредметные и предметные)

При изучении химии в основной школе обеспечивается достижение личностных, метапредметных и предметных результатов.

Личностные:

- в ценностно-ориентационной сфере чувство гордости за российскую химическую науку, гуманизм, отношение к труду, целеустремленность;
- формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.
- формирование основ экологической культуры, соответствующей современному уровню экологического мышления, развитие опыта экологически ориентированной рефлексивно-оценочной и практической деятельности в жизненных ситуациях;

Метапредметные:

- умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;
- умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией;
 - умение оценивать правильность выполнения учебной задачи, собственные возможности её решения;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;

- умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач;
- умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формулировать, аргументировать и отстаивать своё мнение;
- умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью;
- формирование и развитие компетентности в области использования информационно-коммуникационных технологий;
- формирование и развитие экологического мышления, умение применять его в познавательной, коммуникативной, социальной практике и профессиональной ориентации.

Предметные:

- 1.В познавательной сфере:
- давать определения изученных понятий: «химический элемент», «атом», «ион», «молекула», «простые и сложные вещества», «вещество», «химическая формула», «относительная атомная масса», «относительная молекулярная масса», «валентность», «степень окисления», «кристаллическая решетка», «оксиды», «кислоты», «основания», «соли», «амфотерность», «индикатор», «периодический закон», «периодическая таблица», «изотопы», «химическая связь», «электроотрицательность», «химическая реакция», «химическое уравнение», «генетическая связь», «окисление», «восстановление», «электролитическая диссоциация», «скорость химической реакции»;
- описать демонстрационные и самостоятельно проведенные химические эксперименты;
- описывать и различать изученные классы неорганических соединений, простые и сложные вещества, химические реакции;
 - классифицировать изученные объекты и явления;
- делать выводы и умозаключения из наблюдений, изученных химических закономерностей, прогнозировать свойства неизученных веществ по аналогии со свойствами изученных;
- структурировать изученный материал и химическую информацию, полученную из других источников;
- моделировать строение атомов элементов 1-3 периодов, строение простых молекул;
 - 2. В ценностно ориентационной сфере:
- анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
 - 3. В трудовой сфере:
 - проводить химический эксперимент;
 - 4. В сфере безопасности жизнедеятельности:
- оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Содержание программы. (8 класс) Введение. Тема №1 (5 ч)

Предмет химии, Методы познания в химии: наблюдение, эксперимент, моделирование. Источники химической информации, ее получение, анализ и представление его результатов.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных вещества

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки - работы М. В. Ломоносова, А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчетные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

Демонстрации. 1.Модели (шаростержневые и Стюарта Бриглеба) различных простых и сложных веществ. 2. Коллекция стеклянной химической посуды. 3.Коллекция материалов и изделий на основе алюминия. 4. Взаимодействие мрамора с кислотой и помутнение известковой воды.

Лабораторные опыты.1. Сравнение свойств твердых кристаллических веществ и растворов. 2. Сранение скорости испарения воды, одеколона и этилового спирта с фильтровальной бумагой.

Практическая работа № 1

Наблюдение за изменениями, происходящими с горящей свечой, их описание.

Предметные результаты обучения:

Учащийся должен уметь: использовать при характеристике веществ понятия: «атом», «молекула», «химический элемент», «химический знак, или символ», «вещество», «простое вещество», «сложное вещество», «свойства веществ», «химические явления», «физические явления», «коэффициенты», «индексы», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента»;

знать: предметы изучения естественнонаучных дисциплин, в том числе химии; химические символы: Al, Ag, C, Ca, Cl, Cu,Fe, H, K, N, Mg, Na, O, P, S, Si, Zn, их названия и произношение; классифицировать вещества по составу на простые и сложные; различать: тела и вещества; химический элемент и простое вещество;

описывать: формы существования химических элементов (свободные атомы, простые вещества, сложные вещества); табличную форму Периодической системы химических элементов; положение элемента в таблице Д. И. Менделеева, используя понятия «период», «группа», «главная подгруппа», «побочная подгруппа»; свойства веществ (твердых, жидких, газообразных); объяснять сущность химических явлений (с точки зрения атомно-молекулярного учения) и их принципиальное отличие от физических явлений; характеризовать: основные методы изучения естественных дисциплин (наблюдение, эксперимент, моделирование); вещество по его химической формуле согласно плану: качественный состав, тип вещества (простое или сложное), количественный состав, относительная молекулярная масса, соотношение масс элементов в веществе, массовые

доли элементов в веществе (для сложных веществ); роль химии (положительную и отрицательную) в жизни человека, аргументировать свое отношение к этой проблеме; вычислять относительную молекулярную массу вещества и массовую долю химического элемента в соединениях; проводить наблюдения свойств веществ и явлений, происходящих с веществами; соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов.

Метапредметные результаты обучения:

Учащийся должен уметь: определять проблемы, т. е. устанавливать несоответствие между желаемым и действительным; составлять сложный план текста;

владеть таким видом изложения текста, как повествование;

под руководством учителя проводить непосредственное наблюдение; под руководством учителя оформлять отчет, включающий описание наблюдения, его результатов, выводов; использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере знаков химических элементов, химических формул);

осуществлять дедуктивное обобщение (подведение единичного достоверного под общее достоверное), т. е. актуализировать понятие или суждение, и отождествлять с ним соответствующие существенные признаки одного или более объектов;

определять аспект классификации; осуществлять классификацию;

знать и использовать различные формы представления классификации

Предметные результаты обучения

Учащийся должен уметь: обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

выполнять простейшие приемы работы с лабораторным оборудованием: лабораторным штативом; спиртовкой; наблюдать за свойствами веществ и явлениями, происходящими с веществами; описывать химический эксперимент с помощью естественного языка и языка химии:

делать выводы по результатам проведенного эксперимента; готовить растворы с определенной массовой долей растворенного вещества; приготовить раствор и рассчитать массовую долю растворенного в нем вещества.

Метапредметные результаты обучения

Учащийся должен уметь: самостоятельно использовать опосредованное наблюдение.

Тема 2. Атомы химических элементов (94)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов.

Изменение числа нейтронов в ядре атома - образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных уровней атомов химических элементов малых периодов периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи. Взаимодействие атомов химических элементов-неметаллов между собой образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь.

Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи. Понятие о валентности как свойстве атомов образовывать ковалентные химические связи. Составление формул бинарных соединений по валентности.

Взаимодействие атомов химических элементов-металлов между собой - образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева. **Лабораторные опыты.** 3.Изготовление моделей бинарных соединений.4.Изготовление модели, иллюстрирующей свойства металлической связи.

Предметные результаты обучения:

Учащийся должен **уметь** объяснять физический смысл атомного (порядкового) номера химического элемента. Объяснять физический смысл номера группы и периода, составлять схемы строения атомов первых 20 элементов ПСХЭ Д.И. Менделеева. Объяснять закономерности изменения свойств элементов в пределах малых периодов и главных подгрупп. Характеризовать химические элементы (от H до Ca) на основе их положения в ПСХЭ и особенностей строения их атомов. Определять типы химических связей в соединениях.

Учащиеся должны знать: определение понятия «химический элемент», формулировку Периодического закона, определение понятий: «химическая связь», «ион», «ионная связь», определение металлической связи.

Метапредметные результаты обучения:

Учащийся должен уметь: организовывать учебное взаимодействие в группе (распределять роли, договариваться друг с другом и т. д.); предвидеть (прогнозировать) последствия коллективных решений; понимать причины своего неуспеха и находить способы выхода из этой ситуации; в диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности

выполнения своей работы и работы всех, исходя из имеющихся критериев, совершенствовать критерии оценки и пользоваться ими в ходе оценки и самооценки; отстаивать свою точку зрения, аргументируя ее; подтверждать аргументы фактами; критично относиться к своему мнению; слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Тема 3. Простые вещества (6 ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества - металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества - неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Молекулы простых веществ-неметаллов: водорода, кислорода, азота, галогенов. Относительная молекулярная масса.

Способность атомов химических элементов к образованию нескольких простых веществ - аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Число Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль,

миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи. 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Лабораторные опыты. 5.Ознакомление с коллекциями металлов. 6. Ознакомление с коллекциями неметаллов.

Предметные результаты обучения:

Учащиеся должны **уметь** характеризовать связь между составом, строением и свойствами металлов и неметаллов. Характеризовать физические свойства неметаллов. Вычислять молярную массу по формуле соединения, массу вещества и число частиц по известному количеству вещества (и обратные задачи), объём газа по количеству, массу определённого объёма или числа молекул газа (и обратные задачи).

Учащиеся должны **знать** общие физические свойства металлов, определение понятий «моль», «молярная масса», определение молярного объёма газов.

Метапредметные результаты обучения

Учащийся должен уметь: составлять на основе текста схемы, в том числе с применением средств ИКТ;

самостоятельно оформлять отчет, включающий описание эксперимента, его результатов, выводов; использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений химических реакций); различать объем и содержание понятий.

Тема 4. Соединения химических элементов (15 часов)

Степень окисления. Сравнение степени окисления и валентности. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния.

Бинарные соединения металлов и неметаллов: оксиды, хлориды, сульфиды и др. Составление их формул.

Бинарные соединения неметаллов: оксиды, летучие водородные соединения, их состав. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде. Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Понятие о шкале кислотности — шкаларН. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток. Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия доля.

Расчетные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ. 2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Кислотно-щелочные индикаторы, изменение окраски в различных средах. Универсальный индикатор и изменение его окраски в различных средах.

Лабораторные опыты. 7.Ознакомление с коллекциями оксидов. 8.Определение рН растворов кислоты щелочи и воды. 9.Определение рН растворов лимонного и яблочного соков на срезе плодов.10.Ознакомление с коллекциями солей. 11. Ознакомление с коллекцией веществ с разным типом кристаллической решетки. 12. Ознакомление с образцами горной породы.

Практическая работа № 2

Приготовление раствора сахара с заданной массовой долей

Предметные результаты обучения:

Учащиеся должны уметь определять степень окисления элементов в бинарных соединениях, составлять формулы соединений по степени окисления, называть бинарные соединения. Определять принадлежность веществ к классам оксидов, оснований, кислот и солей, называть их, составлять формулы. Знать качественные реакции на углекислый газ, распознавания щелочей и кислот. Характеризовать и объяснять свойства веществ на основании вида химической связи и типа кристаллической решётки. Вычислять массовую долю вещества в растворе, готовить растворы заданной концентрации.

Учащиеся должны знать определения степени окисления, электроотрицательности, оксидов, оснований, кислот и солей, кристаллических решёток, смесей, массовой или объёмной доли растворённого вещества.

Метапредметные результаты обучения

Учащийся должен уметь: работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;

сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет).

Предметные результаты обучения

Учащийся должен уметь: обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

выполнять простейшие приемы работы с лабораторным оборудованием: лабораторным штативом; спиртовкой; наблюдать за свойствами веществ и явлениями, происходящими с веществами; описывать химический эксперимент с помощью естественного языка и языка химии; делать выводы по результатам проведенного эксперимента; готовить растворы с определенной массовой долей растворенного вещества; приготовить раствор и рассчитать массовую долю растворенного в нем вещества.

Метапредметные результаты обучения

Учащийся должен уметь: самостоятельно использовать опосредованное наблюдение.

Тема 5. Изменения, происходящие с веществами (14 ч)

Понятие явлений как изменений, происходящих с веществами.

Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, - химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо - и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты. Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца. Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения - электролиз воды. Реакции соединения - взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения - взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи. 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Демонстрации. Примеры физических явлений. 1.Плавление парафина. 2. Возгонка йода или бензойной кислоты. 3.Растворение окрашенных солей. 4.Диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами. Разложение пероксида водорода помощью диоксида марганца.

Лабораторные опыты. 13. Прокаливание меди в пламени спиртовки или горелки. 14. Замещение меди в растворе хлорида меди (II) железом.

Практическая работа № 3

Признаки химических реакций и их классификация.

Предметные результаты обучения

Учащийся должен уметь: использовать при характеристике веществ понятия: «дистилляция», «перегонка», «кристаллизация», «выпаривание», «фильтрование», «возгонка, или сублимация», «отстаивание», «центрифугирование», «химическая реакция», «химическое уравнение», «реакции соединения», «реакции разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», «экзотермические

реакции», «эндотермические реакции», «реакции горения», «катализаторы», «ферменты», «обратимые реакции», «необратимые реакции», «каталитические реакции», «некаталитические реакции», «ряд активности металлов», «гидролиз»; устанавливать причинно следственные связи между физическими свойствами веществ и способом разделения смесей; объяснять закон сохранения массы веществ с точки зрения атомномолекулярного учения; составлять уравнения химических реакций на основе закона сохранения массы веществ;

описывать реакции с помощью естественного языка и языка химии;

классифицировать химические реакции по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; участию катализатора; использовать таблицу растворимости для определения возможности протекания реакций обмена; электрохимический ряд напряжений (активности) металлов для определения возможности протекания реакций между металлами и водными растворами кислот и солей; наблюдать и описывать признаки и условия течения химических реакций, делать выводы на основании анализа наблюдений за экспериментом; проводить расчеты по химическим уравнениям на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества; с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Метапредметные результаты обучения

Учащийся должен уметь:

составлять на основе текста схемы, в том числе с применением средств ИКТ;

самостоятельно оформлять отчет, включающий описание эксперимента, его результатов, выводов; использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений химических реакций); различать объем и содержание понятий.

Предметные результаты обучения

Учащийся должен уметь: обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

выполнять простейшие приемы работы с лабораторным оборудованием: лабораторным штативом; спиртовкой; наблюдать за свойствами веществ и явлениями, происходящими с веществами; описывать химический эксперимент с помощью естественного языка и языка химии:

делать выводы по результатам проведенного эксперимента; готовить растворы с определенной массовой долей растворенного вещества; приготовить раствор и рассчитать массовую долю растворенного в нем вещества.

Метапредметные результаты обучения

Учащийся должен уметь: самостоятельно использовать опосредованное наблюдение.

Тема 6. Растворение. Растворы. Свойства растворов электролитов (18 ч)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с металлами и оксидами металлов. Взаимодействие кислот с основаниями - реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании. Соли, их классификация и диссоциация в свете ТЭД. различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ

Окислительно-восстановительные реакции.

Определение степени окисления для элементов, образующих вещества разных классов. Реакции ионного обмена и ОВР. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ - металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния.

Лабораторные опыты. 15. Реакции, характерные для растворов кислот (соляной или серной). 16. Получение и свойства нерастворимого основания, например гидроксида меди (II). 17 .Взаимодействие растворов хлорида натрия и нитрата серебра. 18. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия). 19. Реакции, характерные для растворов солей (например, для хлорида меди (II)). 20. Реакции, характерные для основных оксидов (например, для оксида кальция). 21. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

Предметные результаты обучения

Учащийся должен уметь: использовать при характеристике превращений веществ понятия: «раствор», «электролитическая диссоциация», «электролиты», «неэлектролиты», «степень диссоциации», «сильные электролиты», «слабые электролиты», «катионы», «анионы», «кислоты», «основания», «соли», «ионные реакции», «несолеобразующие оксиды», «солеобразующие оксиды», «основные оксиды», «кислотные оксиды», «средние соли», «кислые соли», «основные соли», «генетический ряд», «окислительно восстановительные реакции», «окислитель», «восстановитель», «окисление», «восстановление»; описывать растворение как физико-химический теории основные электролитической иллюстрировать примерами положения диссоциации; генетическую взаимосвязь между веществами (простое вещество — оксид характеризовать общие химические свойства кислотных и — гидроксид — соль); основных оксидов, кислот, оснований и солей с позиций теории электролитической диссоциации; сущность электролитической диссоциации веществ с ковалентной полярной и ионной химической связью; сущность окислительно-восстановительных реакций; приводить примеры реакций, подтверждающих химические свойства кислотных и

основных оксидов, кислот, оснований и солей; существование взаимосвязи между основными классами неорганических веществ; классифицировать химические реакции по «изменению степеней окисления элементов, образующих реагирующие вещества»; составлять уравнения электролитической диссоциации кислот, оснований и солей; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов; уравнения окислительно - восстановительных реакций, используя метод электронного баланса; уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ

различных классов; определять окислитель и восстановитель, окисление и восстановление в окислительно-восстановительных реакциях; устанавливать причинно следственные связи: класс вещества — химические свойства вещества; наблюдать и описывать реакции между электролитами с помощью естественного (русского или родного) языка и языка химии; проводить опыты, подтверждающие химические свойства основных классов неорганических веществ.

Метапредметные результаты обучения

Учащийся должен уметь: делать пометки, выписки, цитирование текста;

составлять доклад; составлять на основе текста графики, в том числе с применением средств ИКТ; владеть таким видом изложения текста, как рассуждение; использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений реакций диссоциации, ионных уравнений реакций, полуреакций окисления восстановления);

различать компоненты доказательства (тезис, аргументы и форму доказательства); осуществлять прямое индуктивное доказательство.

Тема 7. Практикум. Свойства растворов электролитов. (2 часа)

Практическая работа № 4

«Решение экспериментальное задач по ТЭД»

Практическая работа № 5

«Свойства кислот, оснований, солей в свете ТЭД»

Предметные результаты обучения

Учащийся должен уметь: обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности; выполнять простейшие приемы обращения с лабораторным оборудованием: лабораторным штативом, спиртовкой; наблюдать за свойствами веществ и явлениями, происходящими с веществами; описывать химический эксперимент с помощью естественного языка и языка химии:

делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

Учащийся должен уметь: определять, исходя из учебной задачи, необходимость непосредственного или опосредованного наблюдения; самостоятельно формировать программу эксперимента.

Содержание программы (9-й класс)

Введение. Общая характеристика химических элементов и химических реакций. Периодический закон и Периодическая система химических элементов Д. И. Менделеева (5 ч)

Характеристика элемента по его положению в Периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и окисления-восстановления. Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента. Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Химическая организация живой и неживой природы. Химический состав ядра, мантии и земной коры. Химические элементы в клетках живых организмов. Макро- и микроэлементы. Обобщение сведений о химических реакциях.

Лабораторные опыты.

1. Получение гидрооксида цинка и исследование его свойств. 2.Моделирование построения Периодической системы химических элементов Д. И. Менделеева. 3. Замещение железом меди в растворе сульфата меди (II). 4. Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия кислот с металлами.

Предметные результаты обучения

Учащийся должен уметь:

использовать при характеристике превращений веществ понятия: «химическая реакция», «реакции соединения», «реакции разложения», «реакции обмена», «реакции замещения», «реакции нейтрализации», «экзотермические реакции», «эндотермические реакции», «обратимые реакции», «необратимые реакции», «окислительно-восстановительные реакции», «гомогенные реакции», «гетерогенные реакции», «каталитические реакции», «некаталитические реакции», «тепловой эффект химической реакции», «скорость химической реакции», «катализатор»; характеризовать химические элементы 1—3-го периодов по их положению в Периодической системе химических элементов Д. И. Менделеева: химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям, простое вещество, формула, название и тип высшего оксида и гидроксида, летучего водородного соединения (для неметаллов); характеризовать общие химические свойства амфотерных оксидов и гидроксидов; приводить примеры реакций, подтверждающих химические свойства амфотерных оксидов и гидроксидов; давать характеристику химических реакций по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; изменению степеней окисления агрегатному состоянию исходных веществ; участию катализатора;

объяснять и приводить примеры влияния некоторых факторов (природа реагирующих веществ, концентрация веществ, давление, температура, катализатор, поверхность соприкосновения реагирующих веществ) на скорость химических реакций; наблюдать и описывать уравнения реакций между веществами с помощью естественного (русского или родного) языка и языка химии;

Метапредметные результаты обучения

Учащийся должен уметь: определять цель учебной деятельности с помощью учителя и самостоятельно, искать средства ее осуществления, работая по плану, сверять свои действия с целью и при необходимости исправлять ошибки с помощью учителя и самостоятельно; составлять аннотацию текста; создавать модели с выделением существенных характеристик объекта и представлением их в пространственнографической или знаково-символической форме; определять виды классификации (естественную и искусственную); осуществлять прямое дедуктивное доказательство.

Тема 1. Металлы (16 ч)

Положение металлов в Периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей, а также в свете их положения в электрохимическом ряду напряжений металлов. Коррозия металлов и способы борьбы с ней. Металлы в природе. Общие способы их получения.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы.

Строение атомов. Щелочноземельные металлы — простые вещества. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты, фосфаты), их свойства и применение в народном хозяйстве.

Алюминий.

Строение атома, физические и химические свойства простого вещества. Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо.

Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe+2 и Fe+3.

Важнейшие соли железа. Значение железа и его соединений для природы и народного хозяйства.

Демонстрации.

Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты.

- 5. Ознакомление с образцами металлов. 6. Взаимодействие растворов кислот и солей с металлами. 7.Получение гидроксида кальция и исследование его свойств.
- 8. Получение гидроксида алюминия и исследование его свойств. 9 Качественные реакции на катионы железа.

Предметные результаты обучения

Учащийся должен уметь:

использовать при характеристике металлов и их соединений понятия: «металлы», «ряд активности металлов», «щелочные металлы», «щелочноземельные металлы», использовать их при характеристике металлов; давать характеристику химических элементов-металлов (щелочных металлов, магния, кальция, алюминия, железа) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям), простое вещество, формула, название и тип высшего оксида и гидроксида); называть соединения металлов и составлять их формулы по названию;

характеризовать строение, общие физические и химические свойства простых веществметаллов;

объяснять зависимость свойств (или предсказывать свойства) химических элементовметаллов (радиус, металлические свойства элементов, окислительно-восстановительные

свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева; описывать общие химические свойства металлов с помощью естественного языка и языка химии; составлять молекулярные уравнения реакций, характеризующих химические свойства металлов и их соединений, а также электронные уравнения процессов окисления-восстановления;

уравнения электролитической диссоциации; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;

устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки металлов и их соединений, их общими физическими и химическими свойствами;

описывать химические свойства щелочных и щелочноземельных металлов, а также алюминия и железа и их соединений с помощью естественного (русского или родного) языка и языка химии;

выполнять, наблюдать и описывать химический эксперимент по распознаванию важнейших катионов металлов, гидроксид - ионов; экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Металлы»; описывать химический эксперимент с помощью естественного языка и языка химии; проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием металлов и их соединений.

Метапредметные результаты обучения

Учащийся должен уметь: работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;

сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);

представлять информацию в виде таблиц, схем, опорного конспекта, в том числе с применением средств ИКТ;

оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;

составлять рецензию на текст; доказательство от противного.

Тема 2. Практикум 1. Свойства металлов и их соединений (2 ч)

1. Осуществление цепочки химических превращений. 2. Получение и свойства соединений металлов. 3. Решение экспериментальных задач на распознавание и получение соединений металлов.

Предметные результаты обучения

Учащийся д**олжен уметь:**

обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

наблюдать за свойствами металлов и их соединений и явлениями, происходящими с ними; описывать химический эксперимент с помощью естественного языка и языка химии; делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

Учащийся должен уметь:

определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 3. Неметаллы (25 ч)

Общая характеристика неметаллов: положение в Периодической системе химических элементов Д. И. Менделеева, особенности строения атомов, электроотрицательность (ЭО) как мера «неметалличности», ряд ЭО. Кристаллическое строение неметаллов — простых

веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл» и «неметалл».

Водород. Положение водорода в Периодической системе химических элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Вода.

Строение молекулы. Водородная химическая связь. Физические свойства воды. Аномалии свойств воды. Гидрофильные и гидрофобные вещества. Химические свойства воды. Круговорот воды в природе. Водоочистка. Аэрация воды. Бытовые фильтры. Минеральные воды. Дистиллированная вода, ее получение и применение.

Общая характеристика галогенов.

Строение атомов. Простые вещества и основные соединения галогенов, их свойства.

Краткие сведения о хлоре, броме, фторе и йоде. Применение галогенов и их соединений в народном хозяйстве.

Cepa.

Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Серная кислота и ее соли, их применение в народном хозяйстве. Производство серной кислоты.

Азот.

Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV).

Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения.

Фосфор.

Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V) и ортофосфорная кислота, фосфаты. Фосфорные удобрения.

Углерод.

Строение атома, аллотропия, свойства модификаций, применение. Оксиды углерода (II) и (IV), их свойства и применение. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека.

Кремний.

Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Демонстрации.

Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием, с алюминием. Вытеснение хлором брома или йода из растворов их солей. Взаимодействие серы с металлами, водородом и кислородом. Взаимодействие концентрированной азотной кислоты с медью. Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты.

- 10. Изготовление гипсового отпечатка. 11. Ознакомление с составом минеральной воды.
- 12. Качественная реакция на галогенид ионы. 13. Получение и распознавание кислорода.
- 14. Горение серы на воздухе и в кислороде. 15. Свойства разбавленной серной кислоты. 16. Свойства разбавленной азотной кислоты. 17. Взаимодействие концентрированной азотной кислоты с медью. 18. Распознавание фосфатов, карбонатов, силикатов. 19. Ознакомление с образцами силикатной промышленности.

Предметные результаты обучения

Учащийся **должен уметь**:

использовать при характеристике металлов и их соединений понятия: «неметаллы», «галогены», «аллотропные видоизменения», «жесткость воды», «временная жесткость воды», «постоянная жесткость воды», «общая жесткость воды»;

давать характеристику химических элементов - неметаллов (водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния) по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома (заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям), простое вещество, формула, название и тип высшего оксида и гидроксида, формула и характер летучего водородного соединения);

называть соединения неметаллов и составлять их формулы по названию;

характеризовать строение, общие физические и химические свойства простых веществнеметаллов; объяснять зависимость свойств (или предсказывать свойства) химических элементов-неметаллов (радиус, неметаллические свойства элементов, окислительновосстановительные свойства элементов) и образуемых ими соединений (кислотносновные свойства высших оксидов и гидроксидов, летучих водородных соединений, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;

описывать общие химические свойства неметаллов с помощью естественного (русского или родного) языка и языка химии;

составлять молекулярные уравнения реакций, характеризующих химические свойства неметаллов и их соединений, а также электронные уравнения процессов окисления-восстановления; уравнения электролитической диссоциации; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;

устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки неметаллов и их соединений, их общими физическими и химическими свойствами; описывать химические свойства водорода, галогенов, кислорода, серы, азота, фосфора, графита, алмаза, кремния и их соединений с помощью естественного языка и языка химии; описывать способы устранения жесткости воды и выполнять соответствующий им химический эксперимент; выполнять, наблюдать и описывать химический эксперимент по распознаванию ионов водорода и аммония, сульфат-, карбонат-, силикат-, фосфат-, хлорид-, бромид-, иодид-ионов; экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Неметаллы»; описывать химический эксперимент с помощью естественного языка и языка химии; проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием неметаллов и их соединений.

Метапредметные результаты обучения

Учащийся должен уметь:

организовывать учебное взаимодействие в группе (распределять роли, договариваться друг с другом и т. д.); предвидеть (прогнозировать) последствия коллективных решений; понимать причины своего неуспеха и находить способы выхода из этой ситуации; в диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев, совершенствовать критерии оценки и пользоваться ими в ходе оценки и самооценки; отстаивать свою точку зрения, аргументируя ее; подтверждать аргументы фактами; критично относиться к своему мнению; слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения; составлять реферат по определенной форме;

осуществлять косвенное разделительное доказательство.

Тема 4. Практикум 2. Свойства соединений неметаллов (2 ч)

- 1. Решение экспериментальных задач на получение соединений неметаллов и изучение их свойств.
- 2. Получение, собирание и распознавание газов.

Предметные результаты обучения

Учащийся должен уметь:

обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

наблюдать за свойствами неметаллов и их соединений и явлениями, происходящими с ними;

описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

Учащийся должен уметь:

определять, исходя из учебной задачи, необходимость использования наблюдения или эксперимента.

Тема 5. Органические соединения (11 часов).

Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соединений. Молекулярные и структурные формулы органических веществ. Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана. Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение. Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт — глицерин. Понятие об альдегидах на примере уксусного альдегида. Окисление альдегида в кислоту.

Одноосновные предельные карбоновые кислоты на примере уксусной кислоты. Ее свойства и применение. Стеариновая кислота как представитель жирных карбоновых кислот.

Реакции этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот. Понятие об аминокислотах. Реакции поликонденсации. Белки, их строение и биологическая роль. Понятие об углеводах. Глюкоза, ее свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль.

Демонстрации. Модели молекул метана и других углеводородов. Взаимодействие этилена с бромной водой и раствором перманганата калия. Образцы этанола и глицерина. Качественная реакция на многоатомные спирты. Получение уксусно-этилового эфира. Омыление жира. Взаимодействие глюкозы с аммиачным раствором оксида серебра. Качественная реакция на крахмал. Доказательство наличия функциональных групп в растворах аминокислот. Горение белков (шерсти или птичьих перьев). Цветные реакции белков.

Лабораторные опыты. 20. Изготовление моделей молекул углеводородов. 21. Свойства глицерина. 22. Взаимодействие глюкозы с гидроксидом меди (II) без нагревания и при нагревании. 23. Взаимодействие крахмала с йодом.

Предметные результаты обучения:

Учащиеся должны **уметь** определять качественный и количественный состав вещества органического вещества, определять области практического применения органических веществ, свойства и действие на организм органических веществ.

Учащиеся должны знать химические свойства изучаемых органических веществ; химическое загрязнение окружающей среды как следствие производственных процессов, связь между составом, строением, свойствами веществ и их применением органических веществ.

Метапредметные результаты обучения:

Учащийся должен уметь: организовывать учебное взаимодействие в группе, (распределять роли, договариваться друг с другом и т. д.); предвидеть (прогнозировать) последствия коллективных решений; понимать причины своего неуспеха и находить способы выхода из этой ситуации; в диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы.

ТЕМА 6. Обобщение знаний по химии за курс основной школы (6 часов)

Физический смысл порядкового номера элемента в периодической системе химических элементов Д. И. Менделеева, номеров периода и группы. Закономерности изменения свойств элементов и их соединений в периодах и группах в свете представлений о строении атомов элементов. Значение периодического закона.

Типы химических связей и типы кристаллических решеток. Взаимосвязь строения и свойств веществ.

Классификация химических реакций по различным признакам (число и состав реагирующих и образующихся веществ; тепловой эффект; использование катализатора; направление; изменение степеней окисления атомов).

Простые и сложные вещества. Металлы и неметаллы. Генетические ряды металла, неметалла и переходного металла. Оксиды (основные, амфотерные и кислотные), гидроксиды (основания, амфотерные гидроксиды и кислоты) и соли: состав, классификация и общие химические свойства в свете теории электролитической диссоциации и представлений о процессах окисления-восстановления.

Предметные результаты обучения

Учащийся должен уметь:

использовать при характеристике металлов и их соединений понятия: «металлы», «неметаллы» использовать их при характеристике; давать характеристику химических элементов-металлов и элементов-неметаллов по их положению в Периодической системе химических элементов Д. И. Менделеева (называть соединения металлов и составлять их формулы по названию;

характеризовать строение, общие физические и химические свойства простых веществметаллов; веществ-неметаллов.

устанавливать причинно-следственные связи между строением атома, химической связью, типом химической связи в веществах и их соединений, их общими физическими и химическими свойствами;

описывать химические свойства, химических элементов; прогнозировать их применение. экспериментально исследовать свойства металлов и неметаллов и их соединений, решать экспериментальные задачи; описывать химический эксперимент с помощью естественного языка и языка химии; проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием металлов и неметаллов, и их соединений.

Метапредметные результаты обучения

Учащийся должен уметь: работать по составленному плану, используя наряду с основными и дополнительные средства (справочную литературу, сложные приборы, средства ИКТ); с помощью учителя отбирать для решения учебных задач необходимые словари, энциклопедии, справочники, электронные диски;

сопоставлять и отбирать информацию, полученную из различных источников (словари, энциклопедии, справочники, электронные диски, сеть Интернет);

оформлять свои мысли в устной и письменной речи с учетом своих учебных и жизненных речевых ситуаций, в том числе с применением средств ИКТ;

составлять рецензию на текст; доказательство от противного.

Личностные результаты обучения

Учащийся должен: знать и понимать: основные исторические события, связанные с развитием химии и общества; достижения в области химии и культурные традиции (в частности, научные традиции) своей страны; общемировые достижения в области химии; основные принципы и правила отношения к природе; основы здорового образа жизни и здоровьесберегающих технологий;

правила поведения в чрезвычайных ситуациях, связанных с воздействием различных веществ; основные права и обязанности гражданина (в том числе учащегося), связанные с личностным, профессиональным и жизненным самоопределением;

социальную значимость и содержание профессий, связанных с химией;

испытывать: чувство гордости за российскую химическую науку и уважение к истории ее развития; уважение и принятие достижений химии в мире; любовь к природе; уважение к окружающим (учащимся, учителям, родителям и др.) — уметь слушать и слышать партнера, признавать право каждого на собственное мнение, принимать решения с учетом позиций всех участников; чувство прекрасного и эстетических чувств на основе знакомства с миром веществ и их превращений; самоуважение и эмоционально-положительное отношение к себе;

признавать: ценность здоровья (своего и других людей); необходимость самовыражения, самореализации, социального признания;

осознавать: готовность (или неготовность) к самостоятельным поступкам и действиям, ответственность за их результаты; готовность (или неготовность) открыто выражать и отстаивать свою позицию и критично относиться к своим поступкам;

проявлять: экологическое сознание; доброжелательность, доверие и внимательность к людям, готовность к сотрудничеству и дружбе, оказанию помощи тем, кто в ней нуждается; обобщенный, устойчивый и избирательный познавательный интерес, инициативу и любознательность в изучении мира веществ и реакций; целеустремленность и настойчивость в достижении целей, готовность к преодолению трудностей; убежденность в возможности познания природы, необходимости разумного использования достижений науки и технологий для развития общества;

уметь: устанавливать связь между целью изучения химии и тем, для чего она осуществляется (мотивами); выполнять корригирующую самооценку, заключающуюся в контроле за процессом изучения химии и внесении необходимых коррективов, соответствующих этапам и способам изучения курса химии; выполнять ретроспективную самооценку, заключающуюся в оценке процесса и результата изучения курса химии основной школы, подведении итогов на основе соотнесения целей и результатов;

строить жизненные и профессиональные планы с учетом конкретных социальноисторических, политических и экономических условий; осознавать собственные ценности и соответствие их

принимаемым в жизни решениям; вести диалог на основе равноправных отношений и взаимного уважения; выделять нравственный аспект поведения и соотносить поступки (свои и других людей) и события с принятыми этическими нормами; в пределах своих возможностей противодействовать действиям и влияниям, представляющим угрозу жизни, здоровью и безопасности личности и общества.

Тематическое планирование 8 класс (70 часа)

o Kinee (10 incu)			
No	Наименование разделов, тем	Кол-во часов	
1	Введение	4	
2	Атомы химических элементов	8	
3	Простые вещества 6		
4	Соединения химических элементов 14		
5	Изменения, происходящие с веществами 12		
6	Практикум 1 «Простейшие операции с веществами» 3		
7	Растворение. Растворы. Свойства растворов электролитов. 18		
8	Практикум 2 «Свойства растворов электролитов»	1	
9	Итоговое обобщение	2	
	резерв	2	
	Итого:	70	

Тематическое планирование 9 класс (68 часов)

№		Кол-во	
	Наименование разделов, тем	часов	
1	Общая характеристика химических элементов, веществ и		
	химических реакций		
2	Химическая организация природы. Природа – источник сырья для	9	
	химического производства		
3	Металлы	11	
4	Неметаллы	21	
5	Краткие сведения об органических соединениях		
6	Обобщение знаний по химии за курс основной школы	7	
	Итого:	68	

Календарно-тематический план по химии, 8 класс (70 часов, 2 часа в неделю)

№ п/п урока	Дата	Поурочное тематическое планирование
1		Химия-часть естествознания. Предмет химии. Вещества.
2		Превращения веществ. Роль химии в жизни общества. Краткий очерк истории развития химии.
3		Периодическая система химических элементов Д.И. Менделеева. Знаки химических элементов.
4		Химические формулы. Относительная атомная и молекулярная массы. Массовая доля элемента в соединении.
5		Основные сведения о строении атомов. Изменения в составе ядер атомов химических элементов. Изотопы.
6		Строение электронных оболочек атомов.
7		Изменение числа электронов на внешнем энергетическом уровне атомов химических элементов.
8		Взаимодействие атомов элементов-неметаллов между собой.
9		Ковалентная полярная химическая связь.
10		Металлическая химическая связь.
11		Обобщение и систематизация знаний об элементах: металлах и неметаллах, о видах химической связи.
12		Контрольная работа по теме "Атомы химических элементов"
13		Простые вещества-металлы.
14		Простые вещества-неметаллы.
15		Количество вещества.
16		Молярный объем газов.
17		Решение задач с использованием понятия количество вещества, постоянная Авогадро, молярная масса, молярный объем газов
18		Обобщение и систематизация знаний по теме "Простые вещества"
19		Степень окисления.
20		Оксиды.
21		Гидриды металлов и неметаллов.
22		Основания.
23		Основания.
24		Кислоты.
25		Кислоты.
26		Соли.
27		Соли.
28		Аморфные и кристаллические вещества.
29		Чистые вещества и смеси.
30		Массовая и объемная доли компонентов в смеси (раствора).

31	Обобщение и систематизация знаний по теме "Соединения
22	химических элементов".
32	Контрольная работа по теме "Соединения химических элементов"
33	Физические явления в химии.
34	Химические реакции.
35	Химические уравнения.
36	Расчеты по химическим уравнениям.
37	Расчеты по химическим уравнениям.
38	Реакции разложения.
39	Реакции соединения.
40	Реакции замещения.
41	Реакции обмена.
42	Типы химических реакций на примере свойств воды.
43	Обобщение и систематизация знаний по теме "Изменения,
	происходящие с веществами"
44	Контрольная работа по теме "Изменения, происходящие с
	веществами"
45	Правила техники безопасности при работе в химическом
	кабинете. Приемы обращения с лабораторным оборудованием и
	нагревательными приборами
46	Признаки химических реакций.
47	Приготовление раствора сахара и расчет его массовой доли в
1,	растворе.
48	Растворение. Растворимость веществ в воде.
49	Электролитическая диссоциация.
50	Основные положения теории электролитической диссоциации.
51	
52	Ионные уравнения.
	Кислоты, их классификация и свойства.
53	Кислоты, их классификация и свойства.
54	Основания, их классификация и свойства.
55	Основания, их классификация и свойства.
56	Оксиды, их классификация и свойства.
57	Оксиды, их классификация и свойства.
58	Соли, их классификация и свойства.
59	Соли, их классификация и свойства.
60	Генетическая связь между классами веществ.
61	Обобщение и систематизация знаний по теме "Растворение.
	Свойства растворов электролитов".
62	Обобщение и систематизация знаний по теме "Растворение. Свойства растворов электролитов".
63	
03	Контрольная работа по теме "Растворение. Растворы. Свойства
61	растворов электролитов".
64	Окислительно-восстановительные реакции.
65	Окислительно-восстановительные реакции.
66	Решение экспериментальных задач.
67	Итоговый контроль.
68	Задания на лето.
69,70	резерв

Календарно-тематический план по химии, 9 класс (68 часов, 2 часа в неделю)

№ п/п	Дата	Поурочное тематическое планирование
урока	дата	поурочное тематическое планирование
1		Периодический закон и периодическая система химических элементов Д.И. Менделеева в свете учения о строении атома
2		Характеристика химического элемента по его положению в периодической системе Д.И. Менделеева
3		Характеристика химического элемента по его положению в
4		периодической системе Д.И. Менделеева Характеристика химического элемента по кислотно-основным
5		свойствам его соединений. Амфотерность. Практическая работа № 1 « Получение и свойства амфотерных
-		гидроксидов»
6		Классификация химических соединений
7		Классификация химических реакций
8		Скорость химических реакций. Катализ.
9		Скорость химических реакций. Катализ.
10		Окислительно-восстановительные реакции.
11		Окислительно-восстановительные реакции.
12		Практическая работа № 2 «Изучение факторов, влияющих на скорость химической реакции»
13		Повторение и обобщение темы. Подготовка к контрольной работе
14		Контрольная работа № 1 «Общая характеристика химических элементов, веществ и химических реакций»
15		Химическая организация планеты Земля. Геологические оболочки Земли. Полезные ископаемые.
16		Понятие о металлургии. Получение черных и цветных металлов.
17		Получение неметаллов
18		Получение важнейших химических соединений
19		Получение важнейших химических соединений
20		Силикатная промышленность
21		Охрана окружающей среды от химического загрязнения
22		Повторение и обобщение темы. Подготовка к контрольной работе
23		Контрольная работа № 2 «Основы химического производства»
24		Положение металлов в Периодической системе химических элементов Д.И. Менделеева, строение их атомов
25		Общие химические свойства металлов
26		Общие химические свойства металлов

27	Общая характеристика щелочных металлов
28	Общая характеристика элементов 2 группы
29	Алюминий и его соединения
30	Железо и его соединения
31	Коррозия металлов и способы защиты от нее
32	Практическая работа № 3 « Решение экспериментальных задач по
	теме «Металлы"
33	Повторение и обобщение темы. Подготовка к контрольной работе
34	Контрольная работа № 3 «Металлы»
35	Общая характеристика неметаллов
36	Водород
37	Общая характеристика элементов галогенов
38	Соединения галогенов
39	Халькогены. Кислород
40	Сера
41	Сероводород. Сульфиды.
42	Кислородные соединения серы
43	Кислородные соединения серы
44	Азот
45	Аммиак. Соли аммония
46	Аммиак. Соли аммония
47	Кислородсодержащие соединения азота
48	Кислородсодержащие соединения азота
49	Фосфор и его соединения
50	Углерод
51	Кислородсодержащие соединения углерода
52	Кремний и его соединения
53	Практическая работа № 4 «Получение газов и решение
	экспериментальных задач по теме « Неметаллы»
54	Повторение и обобщение темы. Подготовка к контрольной работе
55	Контрольная работа № 4 «Неметаллы»
56	Углеводороды
57	Углеводороды
58	Кислородсодержащие органические соединения
59	Азотсодержащие органические соединения
60	Вещества
61	Химические реакции
62	Химические реакции
63	Основы неорганической химии
64	Основы неорганической химии
65	Повторение и обобщение темы. Подготовка к контрольной работе
66	Контрольная работа № 5 «Итоговая за курс основной школы».
67,68	резерв